
Why Logo?
Brian Harvey, Logo Computer Systems Inc., Boston, USA

Logo is a language for learning. That sentence, one of the slogans of the Logo
movement, contains a subtle pun. The obvious meaning is that Logo is alan­
guage for learning programming; it is designed to make computer programming
as easy as possible to understand. But Logo is also a language for learning in
general. To put it somewhat grandly, Logo is a language for learning how to
think. Its history is rooted strongly in computer-science research, especially
in artificial intelligence. But it is also rooted in Jean Piaget's research into how
children develop thinking skills.

In a certain sense, all programming languages are the same. That is, if you
can solve a problem in one language, you can solve it in another - somehow.
What makes languages different is that some types of problems are easier to
solve in one language than in another. Language designers decide what kinds of
problems their language should do best. They then make design choices in terms
of those goals.

LOGO AS A PROGRAMMING LANGUAGE

Let's postpone for a while the broader educational issues. First, we'll consider
Logo simply as a programming language. How is it similar to other languages;
how is it different? Syntactic details aside, there are several substantial points of
language design through which Logo can be compared to other languages.

Logo is procedural
A programming project in Logo is not written as one huge program. Instead the
problem is divided into small pieces, and,a separate procedure is written for each

22 WHY LOGO?

piece. In this respect, Logo is like most modern languages. Pascal, APL, LISP,
C, and even FORTRAN permit the division of a program into independent
procedures. Among the popular general-purpose languages only BASIC lacks this
capability. (The sample Logo programs in this article are written in Apple Logo,
a dialect written by Logo Computer Systems Inc. Other versions of Logo will be
slightly different in details.)

Consider the Logo program in listing {la). Even if you don't know any­
thing about Logo, it's probably obvious what this pair of procedures does.
Compare it to the BASIC version in listing (1 b).

{la) TO QUIZ
QA [WHAT'S THE BEST MOVIE EVER?) [CASABLANCA]
QA [HOW MUCH IS 2 + 2?) [5]
QA (WHO WROTE "COMPULSORY MISEDUCATION"?) [PAUL

GOODMAN]
END

TO QA :QUESTION :ANSWER
TYPE :QUESTION
TEST EQUALP :ANSWER READLIST
lFTRUE[PRINT (YOU'RE RIGHT!]]
IFFALSE [PRINT SENTENCE (NO, DUMMY, IT'S] :ANSWER]
END

(lb) 10 Q$="WHAT'S THE BEST MOVIE EVER?"
20 A$="CASABLANCA"
30 GOSUB 1000
40 Q$=:"HOWMUCH IS 2 + 2?"
50 A$="5"
60 GOSUB 1000
70 Q$='~WHO WROTE 'COMPULSORY MISEDUCATION'?"
80 A$="PAUL GOODMAN"
90 GOSUB 1000
100 GOTO 9999
1000 PRINT Q$;
1010 INPUT R$ ·
1020 IF R$=A$ THEN GOTO 1100
1030 PRINT "NO, DUMMY, IT'S";A$
1040 RETURN
1100 .PRINT "YOU'RE RIGHT!"

J no .. MIT.JRN .
9999 END

Listing 1 - Comparison of Logo and BASIC. Each program asks the same set of
three questions and compares the user's response to the author's answer. In the
BASIC version (listing 1 b), the 'questioning' subroutine (lin·es 1000-1110) is not
an independent program. In. the Logo version (listing la), the procedure QA
could stand alone, and might conceivably be used by other programs.

WHY LOGO? 23

The GOSUB construct in BASIC is weaker than a true procedure capability
in several ways. For one thing, the BASIC subroutine -is -not an independent
prognim; if line 100 were omitted, the program would 'fall into' the subroutine.
More' important, there is no concept in BASIC of inputs to procedures, like
QUESTION and ANSWER in the Logo program. Instead, extra statements must
be used to assign values to the variables Q$ and A$, explicitly.

This explicit assignment is not simply an inconvenience; It means that the
main part of the program has to 'know' about the inner workings of the sub­
routine. In the Logo version, the procedure named QUIZ knows only that the
procedure QA has two inputs, a question and an answer. If QA were modified
to use different names for the variables, QUIZ would still work. Similarly,
although this particular example doesn't show it, Logo procedures can have an
output that is communicated to the calling procedure. (The 'DEF statement in
BASIC provides a limited version of procedures with outputs; the limitations are
that the inputs and outputs must be numbers, and the definition must be a single
line without conditional branching).

Logo is interactive
Like BASIC, but unlike Pascal, Logo lets you type in a command to be carried
out right away. It's also quick and easy to change one line of l! program. Other
interactive languages are LISP and APL; other noninteractive languages are C
and FORTRAN. - ,

Whether or not a language is interactive has an effect on its efficiency. In
brief, program development is generally faster with an interactive language, but
already-written programs generally run faster in a language that is not inter­
active. The difference has to do with the mechanism by which the computer
'understands' your program.

Every computer is built to understand one particular language. This machine
language is different for each type of computer. Since machine-language instruc­
tions are represented as numbers, they're not easy for people to read. For ex­
ample, the number 23147265 might mean 'add the number in memory location
number 147 to the number in memory location 265'. Programs written in a
high~level language. including Logo and the other languages mentioned here,
must be translated into machine language before the computer can carry them
out. This translation is done by ano'ther computer program that comes in one of
two flavors: compiler or interpreter.

A Pascal compiler, for example, takes a program written in Pascal and
translates (compiles) it into the machine language of whatever computer you're
using. The translated program is permanently saved as machine language (prob­
ably as a ftle on your floppy disk). Thereafter, the machine-language program
can be executed directly. The compilin.g process takes a long time. But once it's

24 WHY LOGO?

finished, running the compiled program is very fast because it need never be
compiled again.

A Logo interpreter, on the other hand, does not create a permanent machine­
language version of your program. Instead, each Logo statement is translated and
executed every time the statement is supposed to be executed, The interpreter
does not produce a machine-language representation of your program but simply
carries out the machine-language steps itself. If a Logo statement is to be exe­
cuted six times, it's translated six times. (Actually, some interpreters, including
Apple Logo, save a partial translation of each procedure so that the second
execution is somewhat faster than the first; this process is too complicated to
explain in this article),

Interpreted languages can be ;interactive. Suppose you want to fmd the value
of 2 + 2 in Pascal. First, you must use the text-editor part of your Pascal system
to write a disk ftle containing a Pascal program. Then, you run the Pascal com­
piler. which will translate the program into machine language. Finally, you run
the compiled program and your computer types out 4. In an interpreted language
like Logo, you can simply type PRINT 2 + 2 to see the same result.

The situation in which interaction is most important is program develop­
ment. If you are writing a complicated program, it probably won't work right
the first time you try it. You'll have to try it, see what goes wrong, change the
program, and try again. In order to see what went wrong, you'd like to be able
to use interactive debugging. (You stop the program where the error happens
and type in. commands to examine the values of variables at that moment.)
This debugging cycle may be repeated many times before the program finally
works completely. Even though a compiler might make. the. program run faster,
an interpreter is likely to make the entire debugging process faster because it's
so much easier to fmd and fix your mistakes. It's only after the program works,
and you want to use it every day without modification, that the compiled
version is really faster.

The ·flexibility and ease of use of an interactive .language is particularly
valuable in. an educational setting. For a student of programming, there often is
no production phase - the program is of interest only as long as it doesn't
work. When it does work, the student goes on to the next problem. In that sort
of environment, the speed advantage of the compiler never materializes. In a
business environment, on the other hand, the actual production use of a program
is likely to be more important, which makes a compiler more desirable.

Some languages use mixed schemes. BASIC (normally an interpreted lan­
guage) has compilers that allow the user to give up interaction for efficiency.
Some LISP compilers can coexist with interpreters, so that some procedures
can be compiled while others are being debugged interactively. Some versions of
Pascal are compiled. into an intermediate language called p-code, which is then

interpreted. FORTH uses a similar system of partial compilation, but the com­
piler is part of the run-time environment, so single statements can be compiled
and run interactively.

WHY LOGO? 25

Logo is recursive
In a procedural language, one procedure can use .another. procedure as a sub­
procedure to do part of its work. A language is recursive if a procedure can be a
sub procedure of itself.

All modern procedural languages allow recursion. Among widely used
languages, only FORTRAN allows procedures but no recursion. (BASIC, as was
mentioned earlier, has neither.) It may seem as though recursion isn't too
important. Why should it be any different from any other use of subprocedures?
It's hard to explain in a simple way why recursion is important. The idea behind
recursion, though, has profound mathematical importance. By allowing a com­
plicated problem to be described in terms of simpler versions of itself, recursion
allows very large problems to be stated in a very compact form.

A well-known example of a problem best solved using recursion is the
Tower of Hanoi puzzle. This puzzle has a number of different-size disks piled
initially on one of three pegs, with the smallest at the top. The problem is to
move the disks onto a different peg, moving one disk at a time and never moving
a disk onto a smaller disk (see Fig. 1).

flal A ~ ~ I ' I
I • I

I I
I I

I A·.
~ c .

(lei

~ ! & I
I
I

I I I
(c ._..,.:_,;:_,A:)';;J: .··

(ld)

~ l ~ I I • I ' I ' I I I I I,, , ... ::,,
A •

Fig. 1 - Typical moves in the Tower of Hanoi puzzle. Fig. la shows the initial
position, Fig. 1 b the irrst move, and Fig. 1c the position after several moves.
Figure 1d shows an illegal situation with a larger disk on a smaller one.

26 • .. WHY L0(30?

To solve this problem, first notice that it's very easy with only two disks
(see Fig. 2a). It's easy to see that we have to get disk 2 onto peg B somehow. To
do that, we have to get disk 1 out of the way. Therefore, move disk 1 to peg C,
disk 2 to peg B, and disk 1 to peg B.

(2a) (2b)

! ~ ~ £ ~ ~ I 5 I
I 6 I

A B c • A B c

l ~ ! r'-,~ r .,
r- _.,
r- _.,

A B c A B

b. r--~-9 ~ A
I I 5

A B c A B c

~ !~~
A B c A B c

Fig. 2 - How the puzzle breaks down into simpler subproblems with similar
solutions. Fig. 2a Shows the simplest solution to a puzzle involving only two
disks. Fig. 2b shows the situation when the same procedure is used on more
disks.

I

Now suppose .there are six disks (see Fig. 2b). Again, we have to begin by
getting disk 6, the largest one, from peg A to peg B. But now there are five disks
in the way, not just one. This provides us with a subproblem: move five disks
from peg A to peg C. But this is exactly the Tower of Hanoi puzzle itself with
five disks instead of six! The subproblem is a simpler version of the main prob­
lem. This calls for the recursive solution shown in listing 2.

TO HANOI :NUMBER :FROM :TO :OTHER
IF :NUMBER;: 0 {STOP] -
HANOI :NUMBER~ 1 :FROM :OTHER :TO

WHY LOGO? 27

PRINT (SENTENCE [MOVE DISK] :NUMBER· [FROM PEG] :FROM
[TO PEG] :TO)

HANOI :NUMBER -1 :OTHER :TO :FROM
END

· Listing 2 - General solution to the Tower of Hanoi puzzle in Logo. The program
requires four inputs. The variable NUMBER tells the program how many disks to
the puzzle; the other three inputs are the names of the pegs. The IF statement
detects the trivial subproblem of moving zero disks, for which there is' nothing to
do.

The solution is found by dividing the problen:J into a series of simpler sub­
problems, all of which can be solved by repeating a siffiple series of moves. First,
move all. but the bottom disk to the third. peg; then,. move the bottom disk to
the destination peg; and finally, move all but the bottom disk to the destination
peg (see Fig. 2).

In working through this program, bear in mind that each use of the HANOI
procedure has its own, private variables; the value of NUMBER, for example,
remains constant throughout any particular use of the procedure, even though
there is another use of HANOI with a different value for NUMBER in the middle.

In addition to Logo, many other languages allow recursion (these include
Pascal, C, LISP, and APL). The style of Logo, however, encourages the use of
recursion more than some other languages. C and Pascal allow recursion but
encourage iteration. (Iteration means telling the computer to execute something
repeatedly, The FOR ... NEXT construct in BASIC is an example.) LOgo is the
other way around: iteration is possible, but recursion is preferred. For many
purposes, neither approach.is clearly right. Iteration is somewhat simpler for the
situations in which it works at all; in some cases like the Tower of Hanoi puzzle,
howr."er, nothing but recursion will do.

Until recently, iteration was much more efficient than recursion, both in
speed and in the use of memory. A major advance in recent implementations of
LOgo, including the versions available for the Apple II and the Texas Instruments
TI-99/4A microcomputers, is that tail recursion is recognized by the interpreter
and treated as if it were written as 'iteration. Tail recursion is the situation in
which the recursive use of a procedure is the last thing done in the procedure.
In general, it is only tail-recursive programs that could just as easily be done
iteratively! The HANOI procedure, for example, i!> not tail recursive because
two recursive procedure calls are in it, only one of which is at the end.

Logo has list processing
Every major programming language has some way to ·group several pieces of
information (immbers, for example) into one large unit. In FORTRAN and
BASIC;this mechanism is the array. I~ Pascal and C, arrays are also used, along

28 WHY LOGO?

with a more complicated grouping called a record in Pascal or a structure in C.
In Logo, the main grouping mechanism is called the list.

Usts and arrays have two major differences, First, arrays have a fixed size,
while lists can become bigger or smaller as a program executes. (There is no
equivalent in Logo to BASIC's DIM statement, which is used to specify how big
an array will be.) The second difference is that arrays must be uniform. That is,
you can have an array of 12 numbers, or an array of strings each 23 characters
long, but you can't have an array of some of both. (A Pascal record or C struc­
ture can have some of both, but only in one predeclared pattern.) Each element
of a Logo list can be any Logo object: a number, a word, or even another list.
Thus, the following are examples of lists:

[VANILLA CHOCOLATE MOCHA]

[VANILLA [MINT CHOCOLATE CHIP] [FUDGE SWIRL]]

[BANANA 3.14159 [RED'BLUE YELLOW] 2.71828]

[FLAVORS [VANILLA CHOCOLATE] SIZES [LARGE SMALL]
OPTIONS [[HOT FUDGE]
[SUGAR CONE]]]

The fust of these is a list of thr.ee words. The second is also a list with three
members, but ther first is a, woni and the .others are lists. The third example
shows that numbers <;:an be included . .The last example, demonstrates that a list
can contain a list that contains a list.,

The lastexample is a special kind of list, called a property list. If this prop­
erty list were associated with the name ICECREAM, the Logo statement

PRINT GPROP "ICECREAM "SIZE

would print:

LARGE SMALL

(GPIWP startds for Gei PROPerty.) Property lists are a convenient way to
group related information. Intagine, for example, a Spacewar game program
with several ships, each with a propertylist. The properties might be the ship's
position, velocity, shape, remaining energy, and so on. ·

The reason that some languages restfict you. to using arrays is that, being
uniform and of ftxed size, they ate more efficient to deal with. The restrictions
on atra:YsJne,an.thatifihe compute-t knows where the beginning of some array
is located in memory, the location of the nth element of the array can be cal­
culated easily, no matter what values the ele~entsactually have.

With a list, the size of each element is 'variable. Therefore, lists are stored
in a more, complicated way. As a result, to fmd the .fourteenth element, you have
to start with the fust one, figure out where the .second one is, then figure out

WHY LOGO? 29

where the third one is, etc. Since this is all done automatically by the Logo
interpreter, lists aren't .h!lnifoqjl.e p~qgral11lJler to use, but it's somewhat slower
than fmding something inside an array.

Among the major languages, LISP uses lists much like those in Logo. (In
fact, the. data structures in Logo are based on those of LISP. LISP's name
stands for LISt Processing.) APL uses a data structure that is like lists in that it is
not ftxed in size, but is like arrays in that it is uniform in composition. In other
words, an APL vector can grow or shrink, but it has to be all numbers or all
characters. Pascal and C don't have lists, but they have pointer variables that can
be used along with records or structures to build the equivalent of lists. FOR­
TRAN and BASIC don't have dynamic storage allocation ,.- you can't make
something bigger in the middle of the program - so there is no way to create
lists in them.

Logo is not typed
In BASIC, if you want a variable to contain a character string, you put a
dollar sign at the end of its name. If you don't use the dollar sign, the variable
must contain a number, not a string. (Some versions of BASIC have a third
type: a variable whose name ends with a percent sign contains a integer, or
whole number.) In Pascal and C, the type of a variable must be given explicitly
in a declaration. In FORTRAN, variables can be declared as in Pascal; if a
variable .isn't declared, its type depends on the ftrst letter of its name. The
letters I through N indicate integer variables.

In Logo, as in LISP and APL, variables are not typed. Any variable can
take on any value. The same variable can be an integer at one point in the
program and a character string (called a word in Logo) later on.

Originally, variable typing wasn't a matter of language-design philosophy.
Variables were typed to make life easier for the people who wrote compilers.
Since different machine-language instructions are used, for example, to add inte­
gers and to add numbers with fractional parts, it's easier to translate 'A+ B' into
machine language if you know ahead of time whether or not A and B are inte­
gers.

More recently, some language designers have taken the position that variable
typing is a good thing, apart from implementation issues, because it disciplines
the programmer to use a variable for only one purpose. In rejecting typing, the
designers of Logo did not mean to encourage the haphazard use of variables
for different purposes; rather, they built a procedural language in which vari­
ables are attached to a particular procedure, rather than being available to the
entire program. This encourages the same discipline in a different way.

As an example in which typed variables are awkward to use, listing 3 illus­
trates the common problem of writing a program that reads some numbers
entered by the user, performs some calculation with them, and repeats the pro­
cess until the user signals that there are no more problems to do.

30 WHY LOGO?

TOADDLOOP
PRINT [TYPE TWO NUMBERS TO ADD.]
MAKE "NUMBERS READLIST
IF FIRST :NUMBERS= "DONE [STOP]
PRINT SENTENCE [THE SUM IS] (FIRST :NUMBERS) + (LAST

:NUMBERS)
ADD LOOP
END

Listing 3 - Logo variables are nontyped. The variable NUMBERS contains what­
ever the user enters. First, it is examined as a list of words and tested to see if it
contains the value DONE; next, it is used as a list of numbers and added.

This program has been written so that the user can enter the word DONE
when no more numbers are left to add. In a typed language, the numbers would
have to be read into a numeric-type variable, not a string type variable. Entering
a non-numeric word would be an error. FORTRAN programs used to be full of
instructions to the user like 'type 9999 to indicate that you're done'. Pascal
programs face the same difficulty.

Logo is extensible
Every computer language has certain built-in, or primitive, operations. Most lan­
guages, for example, include arithmetic operations on numbers, and some way to
print the results. Procedural languages allow the programmer to create new
operations, extending the capability of the language. In that sense, most langua­
ges are extensible. But 'extensible' is used by language designers in a special
sense.

An extensible language is one in which user-defined procedures 'look like'
primitive procedures. This is partly a matter of notation and partly a matter of
real power. In most languages, the primitive arithmetic operations can be applied
to several different types of variables (integer and real, for example) with appro­
priate results for each type. In most languages, however, user-defined procedures
must specify in their definition one particular type of variable to which they
apply. This restriction violates the principle of extensibility.

Extensible languages are particularly villuable for teaching because a teacher
can provide language extensions and teach them as if they were primitives.
LISP, Logo, APL, and FORTH are extensible, with some minor restrictions in
some cases Logo violates pure extensibility, for example, in that some of the
primitive' arithmetiC'· operatit>nnre -represented in infix forin (with the operation
symbol between the two operands, as in 3 + 2), while user-defined procedures
can be represented only in prefix form (with the operation symbol before the
operands, as in SUM 3 2). Almost all Logo primitives are used in prefix form.

As an example of the use of extensibility in Logo, most versions do not
have primitive procedures for iterative looping, like the FOR, DO, or WHILE

WHY LOGO? 31

constructs in other languages. But it is very easy to defme these procedures,
if you want them, so that they look syntactically similar to the IF command
that is a Logo primitive.

LOGO AS A LEARNING LANGUAGE

Among respectable languages, you may have noticed two groupings. Logo,
LISP, and APL are interpreted, list-oriented, and untyped. Pascal and C are
compiled, array-oriented, and typed. (All respectable languages are procedural,
by definition.) These groupings reflect historical accidents, implementation
convenience, and language design philosophy. For example, C and Pascal are
very similar because they are both derived from an earlier language, ALGOL,
that established a style followed by many newer languages.

Compilers have a much easier time with typed languages, while interpreters
are just as happy with untyped ones. The list-oriented languages were all in­
vented by people who are primarily mathematicians, rather than computer
programmers.

Within each group, though, the differences tend to reflect the particular
use each designer had in mind. For example, C is different from Pascal largely
because C was designed as a language for systems programming. In the list­
oriented group, LISP was developed for use in artificial-intelligence research,
and APL was developed to teach algebra and the mathematical topics, like cal­
culus, that depend on algebra. Logo, though, was developed as a learning lan­
guage, not for a specific branch of mathematics, but for problem-solving be­
havior. Logo is meant to appeal particularly to younger students than APL does,
although Logo has also been used successfully with college physics students at
MIT.

From the point of view of the 'pure' computer scientist, Logo is LISP. The
developers ·of Logo, in fact, have been artificial-intelligence researchers for
whom LISP is second nature. The differences between the two languages are all
based on the specific intent to make Logo particularly useful as a learning lan­
guage. Logo's special properties from this point of view will be described next.

Logo is 'tuned' for interesting applications
Probably the most famous aspect of Logo is the idea of turtle geometry. This
approach to computer graphics has been added to other languages, such as
Pascal and PILOT, but it originated with Logo.

Most approaches to computer graphics are based on Cartesian coordinates
(the 'x,y' system you learned for graphing equations in high school - see Fig.
3). In this approach, each line you want to draw is specified in terms of the
specific positions of the endpoints, relative to a fixed-coordinate system. Using
Cartesian coordinates, it's not too hard to draw an upright square in a known
position, but if the square is tilted, its coordinates must be calculated using
trigonometry. The power of turtle geometry is that lines are described not in

32 WHY LOGO?

terms of absolute position in a coordinate system, but relative to the position
and direction of the turtle, a conceptual animal that moves around the TV
screen. In this system, you don't say where the turtle starts or ends, just how
far it moves and in what direction:

TO SQUARE :LENGTH
REPEAT 4[FORWARD :LENGTH RIGHT 90]
END

For our purposes, what's important is that the use of this powerful approach
makes graphics programming possible for beginners the first time they use the
computer.

-20 -10

(?. ;>)

(-16, -14)

1?. ;>)

y·AXIS

20

10

-10

l?.?l

-20

(6,12) (14,12)

D
(6,4) (14,4)

10 20 x-AXIS

Fig. 3 - The difficulties involved in graphics using Cartesian coordinates. A
square is simple to draw when its sides are parallel to the axes, but trigonometry
is necessary when other orientations are used.

WHY LOGO? 33

In the past, computer programming has appealed to only a small number of
people because there has been a real lack of problems that are b,oth interesting
and easy enough for beginners, Traditional programming courses have been
heavy in algebraic problems ('Write a program to solve quadratic equations.').
Therefore, they have not attracted people who don't like the traditional mathe­
matics curriculum.

Turtle geometry is not the only special application built into Logo. Another
one is language processing. Letters, words, and sentences are a natural hierarchy
of Logo objects. (In most programming languages, by contrast, a sentence is not
a list of words, but a string of characters. If you want to deal with the words in
the sentence, you have to write a complicated program just to look for spaces in
the string to divide the words.) As a simple example, listing 4 is a Logo program
to translate a sentence into pig Latin. PLWORD is used as a subprocedure to
translate a single word based on this rule: if the word starts with a vowel, add
AY at the end. If not, move the first letter to the end and try again.

TO PIGLATIN :SENT
IF EMPTYP :SENT[OUTPUT[)]
OUTPUT SENTENCE (PLWORD FIRST :SENT) (PIGLATIN

BUTFIRST :SENT}
END

TO PLWORD :WORD
IFVOWELP FIRST :WORD [OUTPUT WORD :WORD "AY]
OUTPUT PLWORD WORD BUTFIRST :WORD FIRST :WORD
END
TO VOWELP :LETTER
OUTPUT MEMBERP :LETTER [A E I 0 U Y]
END

In the program, WORD and SENTENCE are procedures for joining two
objects into a larger object; FIRST and BUTFIRST separate an object into its
component parts. The primitive procedure FIRST, when applied to a sentence,
produces the first word of the sentence. When applied to a word, it produces the
first letter. No other programming language deals so neatly with this hierarchy of
objects in human language.

Logo is user-friendly
A language for learners has to be designed to deal with problems that are less
important in a language meant for experienced programmers. For example, when
you make a mistake, you should get a detailed, helpful error message. Languages
that say things like SYNTAX ERROR or ERROR NUMBER 259 are not en­
couraging to a beginner. Logo has messages like:

34 WHY LOGO?

+DOESN'T LIKE HELLO AS INPUT

This means that you tried to add a nonnumber, the word HELLO, to some­
thing. When you see the message

I DON'T KNOW H()W TO FRIST

you have used a procedure, PRIST, that you haven't defined. The message

NOT ENOUGH INPUTS TO MAKE

means that the procedure MAKE needs two inputs, and you gave only one. If
the error happens during the execution of a procedure, Logo also prints the
name of the procedure and the line containing the error.

Since the beginning of time (in 1954), programming students have been
getting confused about common programming statements such as X = X + 1, a
frequently used assignment construct that seems to go against one's algebraic
intuition. Pascal's use of := instead of the unadorned equal sign is somewhat of
an improvement, and APL's +- is even better. Even so, the notation doesn't
make it obvious that X +- 3 has an effect very different from X + 3 or X - 3,
which look very similar. In Logo,· the assignment is done this way: MAKE
"X :X + 1. Although less terse than a single-character symbol for assignment,
the word MAKE conjures up much more vividly the notion that something is
being changed, not just used in a calculation.

There are many more ways in which Logo makes explicit things that many
languages leave hidden. For example, Logo uses the colon (which Logoites call
'dots') to mean 'I want the value of this variable'; the same word without the
dots names a procedure. In LISP, the notorious parentheses make it possible to
distinguish procedure calls from variable references without the dots notation;
most other procedural languages simply prohibit using the same word for both
purposes. (That solution would be awkward in Logo because some words like
WORD are not only popular variable names, but also names of primitive pro-
cedures.) ...

In any case, according to th~esign philosophy of Logo, the dots notation
is a good thing, apart from its technical necessity, because it calls attention to
the fact that a variable's value is different from its name; it also points out that
a variable is different from a procedure. For example, in the X= X+ 1 situation,
the two identical-looking appearances of X have different meanings. The second
represents the old value of X, whereas the first merely names the variable being
given a new value. In the Logo version, these two meanings are distinguished by
the notation. The frrst is called "X; the second is called :X.

Another example of a distinction that is explicit in Logo and not in some
other languages is the division of procedures into commands and operations. An
operation is a procedure that computes some value that becomes the output of
the procedure. For example, the arithmetic operations are in this category. A
command does not have an output, but instead has an effect: it prints some­
thing, moves the turtle, or changes the value of a variable.

WHY LOGO? 35

The same distinction is made in Pascal, in which operations are called
functions and commands are called procedures. FORTRAN calls them functions
and subroutines. LISP, APL, and C, however, are less fussy. C treats all pro·
cedures as operations, but allows an operation to be used as if it were a com­
mand; the result of the operation is ignored in that case. In LISP and APL, the
result of such a 'top-level' operation is printed. (In LISP, every procedure has
an output and every top-level command prints something. In APL, some pro­
cedures don't have output and, therefore, don't print anything.) In Logo, using
an operation without a command is considered an error; if you want something
printed, you must use the PRINT command.

The use of infix arithmetic in Logo is a concession to the habits of the
users. All other Logo procedures are used in prefix form, with the procedure
name before the inputs. Arithmetic can also be expressed in prefix form. The
two Logo expressions 3 + 2 and SUM 3 2 are equivalent.

The infix form seems more natural to people accustomed to doing arith­
metic outside of the Logo environment. The prefix form, however, is better in
some ways. For example, it eliminates the need for precedence of operations
(i.e., where division is always done before addition, etc.). Also, it eliminates the
need for parentheses to indicate grouping. In LISP, only the prefix forms are
used.

Another user-friendly aspect of Logo is its facility for interactive definition
of procedures. Early versions of Logo useda line-numbering technique: within
each procedure, lines·were numbered and could be replaced much as the lines of
a BASIC program can be replaced. Current implementations of Logo use a dis·
play editor in which special control characters are used to move the cursor
around the display screen to change individual characters anywhere in a pro­
cedure definition.

Logo has no threshold and no ceiling
This means that Logo is easy ehough for anyone to use, but it is powerful
enough for any project; it's not a 'toy' language. Logo is best known as a lan­
guage for elementary school children, but it's designed for learners of any age
and any level of sophistication.

How young can a Logo learner be? Well, very young children might have
trouble with typewriter keys and with the spelling of procedure names. Several
years ago, however, Radia Perlman at MIT built a series of special keyboards
with large buttons labeled with pictures instead of words. With this special
hardware, she taught the ideas of turtle geometry to 4-year-olds. This project
even included the idea of procedures, with buttons called 'start remembering'
and 'stop remembering' to delimit a procedure definition, and one called 'do it'
to execute the procedure. Multiple procedures could be named by using buttons
in different colors.

How old can a Logo learner be? Professors Harold Abelson and Andrea

36 WHY LOGO?

diSessa have been using Logo to teach physics to MIT undergraduates. They use
Logo simulation programs to demonstrate not only simple Newtonian mechanics
but even the general theory of relativity. Their book, Thrtle Geometry: The
Computer as a Medium for Exploring Mathematics (Cambridge, MA: MIT
Press, 1981), demonstrates their approach, which has also been used successfully
with high school students.

Logo has also been used for a special group of learners, those with severe
handicaps. In the past, many children of normal or superior intelligence, but
with impaired ability to communicate, have been diagnosed as retarded. Com­
puters can be used with such children both as a communication prosthesis and
as a field of interest in which the handicapped learner can exhibit autonomy in
pursuing goals. The use of Logo in education lor the handicapped is explored
in Dr. E. Paul Goldenberg's book Special Technology for Special Children
(Baltimore: University Park Press, 1979).

Other languages designed with students in mind are BASIC, Pascal and
APL. (I omit PILOT, which was designed not so much for students as for teachers;
in its original design, students were supposed to use computer-aided-instruction
programs written in PILOT, rather than PILOT itself.) How do these languages.
compare with Logo in their applicability to education?

BASIC was designed as a modification of FORTRAN for beginners. By
far the most important advance in BASIC was its interactive approach. This was
much more of a pioneering step than it now seems because people are now accus­
tomed to inexpensive personal computers with this feature. In the early days of
BASIC, the only computers were huge, expensive ones. Although timesharing,
which allowed several people to use the big computer at once, had recently
been invented, many people objected to it because it used the precious time of
the huge computers inefficiently. (The response of timesharing advocates was
that it was more efficient in the use of human time). An interactive language was
even more time-consuming than timeshared use of the old, compiled languages.
For John Kemeny and his colleagues at Dartmouth to move against the general
worship of efficiency was very brave.

Besides adding interaction, BASIC removed some of the most difficult
parts of FORTRAN. For example, the INPUT and PRINT statements in BASIC
don't require a detailed specification of the format in which information is pre­
sented, as FORTRAN does with its FORMAT statement. (As an example,
FORTRAN requires the user to specify the number of digits before and after
the decimal point in the printed form of a number.) Of the modern languages,
only C uses primarily format-directed input and output. Unfortunately, the
important ideas of procedures and local variables were also left out of BASIC.

This means that easy problems are very easy to solve in BASIC, but hard
problems are close to impossible. Any large BASIC program is bound to be an
unreadable maze of GOTOs. The designers of BASIC, after all, intended it as a
language for beginners (i.e., Beginner's All-purpose Symbolic Instruction Code).
FORTRAN was supposed to be used for more difficult programs.

WHY LOGO? 37

The advent of personal computers has pushed BASIC into a more extended
role, not because it's easy for the programmer, but because it's easy for the
computer! The Logo interpreter, like the Pascal compiler, barely fits in an
Apple II computer with 64K bytes of memory. BASIC interpreters are used with
8K-byte machines at a much lower cost. The result is that computer magazines
are filled with long, complicated BASIC programs that are far from basic in
their readability.

Pascal, on the other hand, was designed to include the most advanced ideas
of computer science in recent years. Although intended as a first language, it
was meant primarily for college students, particularly those interested in com­
puter science as a career. That helps to explain why it is compiled and typed,
two strong barriers to the unsophisticated student. Even the simplest Pascal
program is rather complicated to write, enter into the computer, and run. That's
why, in practice, Pascal is often taught to students who have already used
BASIC and FORTRAN.

BASIC and Pascal were both designed to teach computer programming
per se. APL was designed to teach mathematics, especially at the high school
level. Its inventor, Kenneth Iverson, used it for several years as a blackboard
language without any intention of actually implementing it on a computer.
That helps explain his willingness to use special symbols not then found on any
.actual computer printer. Anything can be drawn on the blackboard!

In its intended use, APL is very powerful. Many computations that require
iterative loops and auxiliary variables in other languages can be done in one step
in APL. Most people see this power mainly as a matter of terseness; APL is famous
(or notorious) for its one-line programs. The real virtue of APL's approach is that
it allows the student's attention to be focused on the mathematics of a problem,
rather than on the needs of the computer. APL was designed to be used not in a
special programming course or a special unit stuck into another math course, but
casually throughout an algebra course, just as you'd use a calculator.

Logo's goal is different from all these. It isn't supposed to be an easy
introduction to something else, it's not specifically for computer-science majors,
and it isn't a tool for teaching the same math curriculum people are already
teaching. Instead, it's a door into the territory of the computer as an object for
intellectual exploration. To return to the theme stated at the beginning of this
article, Logo is for learning learning.

WHY LOGO?

In his book Mindstorms: Children, Computers, & Powerful Ideas (New York:
Basic Books, 1980), Seymour Papert says, 'It is not true to say that the image of
a child's relationship with a computer I shall develop here goes far beyond what
is common .. in today's schools. My image does not go beyond: It goes in the

38 WHY LOGO?

opposite direction'. Logo isn't just a programming language; it's also a philosophy
of education. Papert's book is the best explanation of that philosophy, but what
follows is a briefer summary.

A child learns partly by picking up specific facts and skills. Much of existing
formal education is about facts and skills: reading, spelling, and the multiplica­
tion table. But a more profound kind of learning is the skill of learning itself,
which involves the building of mental models of the world, of oneself, and of
the learning process. These models are developed through intellectual explora­
tion. That exploration may begin in a weak, haphazard way, but a good learner
develops strategies for purposeful exploration. The more one learns, the better
the model of learning, and the more able one becomes as a learner.

In this process of growth, it doesn't really matter what particular aspect
of the world you explore. In the introduction to Mindstorms, Papert mentions
that at age 2 he fell in love with automobile gearboxes. When I was in junior
high school, I fell in love with hypnotism. The point about using computers in
education is not that everyone must know something about computers, but
simply that for many people, computer programming can be the arena for this
general process of learning to learn. Because the computer is such 11 general­
purpose machine, it can appeal to many different interests. It can draw pictures,
make music, write stories, or move robots.

'I want a job as a computer programmer. Why should I learn Logo, and not
something useful like COBOL?' This is a common question. There are two
possible answers to it. The first is that Logo, as explained earlier, is designed to
make explicit many of the fundamental ideas of computer programming. Some­
one who learns Logo is likely to have a very clear idea of the nature of variables,
procedures, and most other programming constructs. So Logo may be a better
basis even for learning COBOL than simply starting with COBOL itself. But the
second answer is that Logo's purpose isn't to train computer programmers.
Logo isn't meant to replace all other programming languages.

Logo is generally associated with children because most people have a
model of the learning process in which children learn and adults don't. This
model is unfortunate. Logo can be useful to people of any age, but it will be
most useful to you if you approach it in a playful, exploratory way.

It's important to distinguish between the Logo language and any particular
implementation of Logo. Some things can't be done in the Apple and Texas
Instruments versions of Logo simply because the machines aren't big or fast
enough or because the implementation doesn't include some capabilities. For
example, no microcomputer version of Logo has a good way of storing data on
disk, although all versions can store procedures on disk.

The Logo interpreter barely fits in a 64k-byte Apple II, and the implementa­
tion favors the features needed for education, not those needed for practical
data processing. But in principle, Logo is a good language in which to develop
any application because of its interactive debugging and its procedural style.

Do you want to write a video-game program? It'll probably run too slowly

WHY LOGO? 39

in Apple Logo, unless it's a simple one. But it might be worthwhile to develop it
in Logo, playing .around with different ideas for your game in an environment
that permits quick, easy modification of your program, and then rewrite it later
in some other language. The advantage of Logo can be described partly in purely
technical terms like 'interactive'. Another way of looking at it, however, is that
Logo encourages the playfulness you need to design the best possible game. If
all you want to do is make an exact copy of Asteroids, the benefits of Logo are
less important.

In summary: Logo is a LISP-like language, and a laboratory for loose,
lifelong learning about learning.

© 1982 Byte Publications Inc.

	first Why Logo pages
	Why Logo second to last
	Why Logo middle pages
	why logo ending

